Ako vypočítať vzdialenosť?
Ak chcete vypočítať vzdialenosť, začnite tým, že zistíte priemernú rýchlosť, ktorou predmet prešiel, a dobu, po ktorú cestoval. Uistite sa, že pre priemernú rýchlosť a čas používate rovnaké jednotky, inak váš výpočet nebude presný. Ak napríklad používate rýchlosť na míle za hodinu, na čas by ste museli použiť hodiny, nie minúty alebo sekundy. Akonáhle máte svoje 2 hodnoty, jednoducho ich vynásobte, aby ste získali vzdialenosť, ktorú predmet prešiel. Ak sa chcete dozvedieť, ako vypočítať vzdialenosť medzi 2 bodmi, posuňte sa nadol!

Vzdialenosť, často priradená premennej d, je mierou priestoru obsiahnutého priamkou medzi dvoma bodmi. Vzdialenosť sa môže vzťahovať na priestor medzi dvoma nehybnými bodmi (napríklad výška osoby je vzdialenosť od spodnej časti nôh k hornej časti hlavy) alebo sa môže vzťahovať na priestor medzi aktuálnou polohou pohybu objekt a jeho počiatočné umiestnenie. Väčšinu problémov so vzdialenosťou je možné vyriešiť pomocou rovníc d = s avg × t, kde d je vzdialenosť, s avg je priemerná rýchlosť a t je čas, alebo pomocou d = √ ((x 2 - x 1) 2 + (y 2 - y 1) 2), kde (x 1, y 1) a (x 2, y 2) sú súradnice x a y dvoch bodov.
Metóda 1 z 2: nájdenie vzdialenosti s priemernou rýchlosťou a časom
- 1Nájdite hodnoty priemernej rýchlosti a času. Keď sa pokúsite nájsť vzdialenosť, ktorú pohybujúci sa objekt prešiel, sú pre tento výpočet nevyhnutné dve informácie: jeho rýchlosť (alebo veľkosť rýchlosti) a čas, kedy sa pohyboval. Na základe týchto informácií je možné nájsť vzdialenosť, ktorú objekt prešiel, podľa vzorca d = s avg × t.
- Aby sme lepšie porozumeli postupu pri použití vzorca na vzdialenosť, vyriešme príklad problému v tejto časti. Povedzme, že sa rútime po ceste 120 míľ za hodinu (asi 193 km za hodinu) a chceme vedieť, ako ďaleko prejdeme za pol hodinu. Použitím 120 mph ako priemernej rýchlosti a 0,5 hodiny ako hodnoty času tento problém vyriešime v nasledujúcom kroku.
- 2Priemernú rýchlosť vynásobte časom. Keď poznáte priemernú rýchlosť pohybujúceho sa predmetu a čas, kedy sa pohyboval, je zistenie vzdialenosti, ktorú urazil, pomerne jednoduché. Jednoducho vynásobte tieto dve veličiny, aby ste našli odpoveď.
- Všimnite si však, že ak sú jednotky času použité vo vašej priemernej hodnote rýchlosti odlišné od tých, ktoré sú použité vo vašej hodnote času, budete musieť jednu alebo druhé previesť, aby boli kompatibilné. Ak napríklad máme priemernú hodnotu rýchlosti, ktorá sa meria v km za hodinu, a časovú hodnotu, ktorá sa meria v minútach, museli by ste túto časovú hodnotu rozdeliť na 60 a previesť ju na hodiny.
- Vyriešime náš príklad. 120 míľ/hodinu × 0,5 hodiny = 60 míľ. Všimnite si toho, že jednotky v časovej hodnote (hodiny) sa zrušia s jednotkami v menovateli priemernej rýchlosti (hodiny), aby zostali iba jednotky vzdialenosti (míle).
Ako vypočítam vzdialenosť, ktorú prejde kamión kuriérskej služby pri 20 cestách? - 3Manipulujte s rovnicou, aby ste vyriešili ďalšie premenné. Jednoduchosť základnej rovnice vzdialenosti (d = s avg × t) uľahčuje použitie rovnice na nájdenie hodnôt premenných okrem vzdialenosti. Jednoducho izolovať premennú, ktorú chcete platiť pre podľa základných pravidiel z algebry, potom vložka hodnôt pre ostatné dve premenné nájsť hodnotu pre tretí. Inými slovami, na zistenie priemernej rýchlosti vášho objektu použite rovnicu s avg = d/t a na zistenie času, po ktorý objekt cestuje, použite rovnicu t = d/s avg.
- Povedzme napríklad, že vieme, že auto má najazdených 60 míľ za 50 minút, ale nemáme hodnotu priemernej rýchlosti na cestách. V takom prípade by sme mohli izolovať premennú s avg v rovnici základnej vzdialenosti, aby sme dostali s avg = d/t, potom jednoducho rozdeľte 60 míľ/50 minút, aby ste dostali odpoveď 1,2 míle/minútu.
- Všimnite si toho, že v našom prípade má naša odpoveď na rýchlosť neobvyklé jednotky (míle/minútu). Ak chcete dostať odpoveď bežnejšou formou míľ za hodinu, vynásobte ju 60 minútami za hodinu a získate 72 míľ za hodinu.
- 4Upozorňujeme, že premenná „s avg“ vo vzorci vzdialenosti sa týka priemernej rýchlosti. Je dôležité pochopiť, že základný vzorec vzdialenosti ponúka zjednodušený pohľad na pohyb objektu. Vzorec vzdialenosti predpokladá, že pohybujúci sa objekt má konštantnú rýchlosť - inými slovami, predpokladá, že sa objekt v pohybe pohybuje jednou nemennou rýchlosťou. Pri abstraktných matematických problémoch, s akými sa môžete stretnúť v akademickom prostredí, je niekedy stále možné modelovať pohyb objektu pomocou tohto predpokladu. V reálnom živote Tento model však často presne neodráža pohyb pohybujúcich sa predmetov, ktoré v skutočnosti môžu v priebehu času spomaliť, zastaviť a vrátiť späť.
- Napríklad vo vyššie uvedenom príklade problému sme dospeli k záveru, že na to, aby sme 60 minút cestovali za 50 minút, musíme cestovať 72 míľ/hodinu. To však platí iba vtedy, ak celú cestu cestujete jednou rýchlosťou. Napríklad tým, že budeme polovicu cesty cestovať 80 míľ/h a druhú polovicu 64 míľ/hodinu, budeme stále cestovať 60 míľ za 50 minút - 72 míľ/hodinu = 60 míľ/50 minút =?????
- Riešenia založené na počte pomocou derivátov sú často lepšou voľbou ako vzorec vzdialenosti na definovanie rýchlosti objektu v situáciách reálneho sveta, pretože zmeny rýchlosti sú pravdepodobné.

Metóda 2 z 2: zistenie vzdialenosti medzi dvoma bodmi
- 1Nájdite dva bodové priestorové súradnice. Čo keď namiesto zistenia vzdialenosti, ktorú pohybujúci sa objekt prešiel, musíte nájsť vzdialenosť medzi dvoma nehybnými predmetmi? V takýchto prípadoch nebude vyššie opísaný vzorec vzdialenosti založený na rýchlosti žiadny zmysel. Našťastie na ľahké nájdenie vzdialenosti medzi dvoma bodmi možno použiť samostatný vzorec vzdialenosti. Na použitie tohto vzorca však budete potrebovať súradnice svojich dvoch bodov. Ak máte do činenia s jednorozmernou vzdialenosťou (napríklad na číselnom riadku), vaše súradnice budú dve čísla x 1 a x 2. Ak máte do činenia so vzdialenosťou v dvoch dimenziách, budete potrebovať hodnoty pre dva (x, y) body, (x 1, y 1) a (x 2, y 2). Nakoniec pre tri dimenzie budete potrebovať hodnoty pre (x 1, y 1, z 1) a (x 2, y 2, z 2).
- 2Nájdite 1-d vzdialenosť odčítaním hodnoty súradníc pre dva body. Výpočet jednorozmernej vzdialenosti medzi dvoma bodmi, keď poznáte hodnotu pre každý z nich, je hračka. Jednoducho použite vzorec d = | x 2 - x 1 |. V tomto vzorci odčítate x 1 od x 2, potom vezmite absolútnu hodnotu svojej odpovede a nájdite vzdialenosť medzi x 1 a x 2. Typicky budete chcieť použiť vzorec jednorozmernej vzdialenosti, keď vaše dva body ležia na číselnej osi alebo osi.
- Všimnite si toho, že tento vzorec používa absolútne hodnoty (symboly " | | "). Absolútne hodnoty jednoducho znamenajú, že výrazy obsiahnuté v symboloch sa stanú pozitívnymi, ak sú negatívne.
- Povedzme napríklad, že nás zastavil kraj cesty na úplne rovnom úseku diaľnice. Ak je malé mesto 5 míľ pred nami a mesto 1 míľu za nami, ako ďaleko sú od seba tieto dve mestá? Ak nastavíme mesto 1 ako x 1 = 5 a mesto 2 ako x 1 = -1, nájdeme d, vzdialenosť medzi týmito dvoma mestami, nasledovne:
- d = | x 2 - x 1 |
- = | -1 - 5 |
- = | -6 | = 6 míľ.
Našťastie je možné na nájdenie priamej vzdialenosti medzi dvoma bodmi použiť samostatný vzorec vzdialenosti. - 3Nájdite 2-d vzdialenosť pomocou Pytagorovej vety. Nájdenie vzdialenosti medzi dvoma bodmi v dvojrozmernom priestore je komplikovanejšie ako v jednej dimenzii, ale nie je ťažké. Jednoducho použite vzorec d = √ ((x 2 - x 1) 2 + (y 2 - y 1) 2). V tomto vzorci odčítate dve súradnice x, výsledok odmocníte, odčítate súradnice y, výsledok umocníte štvorcom, potom sčítate dva medzivýsledky a vezmete odmocninu, aby ste zistili vzdialenosť medzi dvoma bodmi. Tento vzorec funguje v dvojrozmernej rovine - napríklad na základných x/y grafoch.
- 2-D vzdialenosť vzorec využíva z Pytagorovej vety, ktorá diktuje, že prepona pravouhlého trojuholníka sa rovná odmocnine štvorcov ďalších dvoch stranách.
- Povedzme napríklad, že máme dva body v rovine xy: (3, -10) a (11, 7), ktoré predstavujú stred kruhu a bod v kruhu. Aby sme zistili vzdialenosť medzi týmito dvoma bodmi, môžeme to vyriešiť nasledovne:
- d = √ ((x 2 - x 1) 2 + (y 2 - y 1) 2)
- d = √ ((11 - 3) 2 + (7 - -10) 2)
- d = √ (64 + 289)
- d = √ (353) = 18,79
- 4Nájdite 3-d vzdialenosť upravením vzorca 2-d. V troch dimenziách majú body okrem súradníc x a y aj súradnice az. Na nájdenie vzdialenosti medzi dvoma bodmi v trojrozmernom priestore použite d = √ ((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2). Toto je upravená forma vyššie uvedeného vzorca dvojrozmernej vzdialenosti, ktorý berie do úvahy súradnice z. Odčítaním dvoch súradníc z, ich zarovnaním do kvadratúry a postupovaním zvyškom vzorca ako je uvedené vyššie, zaistíte, že vaša konečná odpoveď bude predstavovať trojrozmernú vzdialenosť medzi vašimi dvoma bodmi.
- Povedzme napríklad, že sme kozmonaut plávajúci vo vesmíre v blízkosti dvoch asteroidov. Jeden je asi 8 kilometrov pred nami, 2 km napravo od nás a 5 míľ pod nami, zatiaľ čo druhý je 3 km za nami, 3 km vľavo od nás a 4 km nad nami. Ak reprezentujeme polohy týchto asteroidov so súradnicami (82, -5) a (-3, -34), vzdialenosť medzi týmito dvoma planétami môžeme nájsť nasledovne:
- d = √ ((- - 3 - 8) 2 + (-3 - 2) 2 + (4 - -5) 2)
- d = √ ((--11) 2 + (-5) 2 + (9) 2)
- d = √ (121 + 25 + 81)
- d = √ (227) = 15,07 km
Otázky a odpovede
- Žena stojaca pred útesom tlieska rukami a o 2,8 sekundy počuje ozvenu. Ako ďaleko je útes?Trvá 1,4 sekundy, kým sa zvuk dostane jedným smerom z jej rúk na útes. Znásobte preto rýchlosť zvuku o 1,4 sekundy. Rýchlosť zvuku je 343 metrov za sekundu alebo 1125 metrov za sekundu.
- Ako vypočítam vzdialenosť na mape?Mapy majú spravidla rozsah kilometrov. Porovnajte vzdialenosť zobrazenú na mape s jej mierkou.
- Ako zistím vzdialenosť a priemernú rýchlosť od a do b, ak cesta trvá 2 minúty?Krížovo vynásobte trvanie z hodiny a prejdenú vzdialenosť za dané obdobie.
- Ako môžem skontrolovať rýchlosť vozidla počítaním času medzi stĺpmi žiarovky?Ak poznáte vzdialenosť medzi stĺpikmi žiarovky a čas potrebný na prejdenie od jedného stĺpika k ďalšiemu, vydelte vzdialenosť uplynulým časom. To vám poskytne rýchlosť v stopách za sekundu, metroch za sekundu alebo v iných jednotkách, ktoré používate. Možno to budete chcieť previesť na iné jednotky, ako napríklad míle za hodinu alebo kilometre za hodinu.
- Lietadlo prekoná 3519 km od P do Q a 10948 km od Q do R na zemskom povrchu. Ako vypočítam čas, ktorý lietadlo prejde vzdialenosťou PQ a QR pri priemernej rýchlosti 800 km/h?Sčítaním dvoch vzdialeností zistíte celkovú prejdenú vzdialenosť. Potom vydelte priemernou rýchlosťou a vypočítajte uplynulý čas (v hodinách).
- Ako môžem vypočítať hodiny na vzdialenosť?Potrebovali by ste vedieť rýchlosť (vzdialenosť za strávený čas). Vynásobením rýchlosti hodinami získate celkovú prejdenú vzdialenosť.
- Ak je pole dlhé 875 metrov, koľko celých kôl musím odbehnúť, aby som absolvoval 100 kilometrov?Celé kolo by malo mať 1750 metrov. 100 kilometrov je 100000 metrov. 100000 delené 1750 sa rovná o niečo viac ako 57 celých kôl.
- Ako vypočítam vzdialenosť, ktorú prejde kamión kuriérskej služby pri 20 cestách?Sčítajte spolu prejdenú vzdialenosť pri každom z 20 výletov. Ak sú všetky cesty rovnaké, vynásobte vzdialenosť jednej cesty 20.
- Aký je vzorec na nájdenie prejdenej vzdialenosti pohybujúceho sa predmetu?Prejdená vzdialenosť = rýchlosť (rýchlosť) vynásobená uplynutým časom. D = (v) (t).
- Ako môžem vypočítať, ako dlho mi bude trvať prejsť 0,1 míle?Musíte vedieť, ako rýchlo kráčate. Vydeľte vzdialenosť svojou rýchlosťou. Ak napríklad kráčate štyri míle za hodinu (svižným tempom), rozdeľte (v tomto prípade) 0,1 míle o 4 míle/hodinu. To sa rovná 0,250 hodiny, čo je 1,5 minúty.